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Abstract
For a flux qubit considered as a two-level system, for which a hidden polynomial
pseudo-supersymmetry was previously discovered, we propose a special time-
dependent external control field. We show that for a qubit placed in this field
there exists a critical value of tunnel frequency. When the tunnel frequency
is close enough to its critical value, the external field frequency may be tuned
in a way to keep the probability to detect a definite direction of the current
circulating in a Josephson-junction circuit above 1/2 during a desirable time
interval. We also show that such a behavior is not much affected by a sufficiently
small dissipation.

PACS numbers: 03.67.Lx, 03.75.Lm, 85.25.Am

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past few years, superconducting circuits based on Josephson tunnel junction have
attracted much attention both from theoretical and experimental viewpoints as possible
candidates for the implementation of quantum computer (see, e.g. [1–3]). Usually they
represent a small Josephson-junction circuit, called a Cooper-pair box, which consists of a
small superconducting electrode connected to a reservoir via a Josephson junction [2]. For
a flux qubit the circuit with a very small inductance containing three Josephson junctions is
described (in appropriate units) by the following two-level Hamiltonian [3]:

Hq = −�σx − ε(t)σz. (1)

Here � is the tunnel frequency, and ε(t) is a time-dependent field (bias) which is controlled
by an externally applied flux. Although in general � is a function of ε, it varies on the scale of
the single junction plasma frequency, which is much above the typical energy range at which
the qubit is operated [4]. We thus can assume � to be constant for the purpose of this paper.
Solving the Schrödinger equation with Hamiltonian (1),

i�̇(t) = Hq�, � = (ψ1, ψ2)
T (2)
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(superscript ‘T’ means the transposition and the dot over a symbol means the derivative with
respect to time), we obtain the probability of a definite direction of the current circulating
in the ring, i.e. P ↓ = |ψ1|2 is the probability of the clockwise direction of the current and
P ↑ = |ψ2|2 is the probability of the opposite current direction.

One of the most important problem in quantum computation is connected with the
possibility of controlling the state of an array of qubits. Typically the simplest two-qubit
operations are generated by interplay of the coupling between qubits and local fields. Much
theoretical attention has been recently paid to studying the controllable coupling between
qubits of different types (see [5] and references therein). Recently it has been shown [6] that
in the simplest and the most important, from an engineering viewpoint, case of an ‘always on’
and fixed coupling, a two-qubit Hamiltonian may be decoupled and the control problem is, in
particular, reduced to finding the evolution of a one-qubit placed in a time-dependent external
control field. This observation shows an additional importance of controlling a one-qubit state.
This is the main subject we devote the present paper.

Usually, the probabilities, as functions of time, show an oscillating behavior (cf famous
Rabi oscillations, see e.g. [7]). But for some specific external fields this character may be
changed drastically thus showing a possibility to control the qubit state. Up to now such a
possibility is known to be mostly related to oscillating external fields [8].

Recently [9] it was proposed to consider a two-level Schrödinger equation as a Dirac
equation with a non-Hermitian Hamiltonian where time plays the role of a spatial variable.
This possibility revealed a hidden pseudo-supersymmetry which may be associated with a
two-level system [10] and lead to discovering new time-dependent external fields where a
two-level system admits solutions in terms of elementary functions. An advantage of analytic
solutions is the possibility of a careful analysis of their properties which may reveal unexpected
peculiarities [11]. In this paper, we apply these results to show the possibility of controlling the
qubit state with an external field of a special configuration. We show that there exists a critical
value of the tunnel frequency �. While the tunnel frequency approaches this critical value,
the probability P ↓(t) oscillates around a value exceeding 1/2 with a decreasing amplitude
and after the critical value is reached it becomes a function monotonously increasing up to a
limiting value equal to 3/4. Then using the property that this special excitation regime is, in
fact, a limiting case of a more general oscillating external field, we demonstrate that one can
control a definite direction of the current in the ring (i.e. the qubit state) during a desirable time
interval. Finally we also show that such a behavior is not much affected by the presence of
a reasonably small dissipation featuring open quantum systems. We start with reminding the
reader main constructions leading to polynomial pseudo-supersymmetry in two-level systems
which is done in the following section.

2. Polynomial pseudo-supersymmetry of two-level systems

Similar to the conventional supersymmetry in quantum mechanics (for recent developments see
[12]), pseudo-supersymmetry is based on intertwining and factorization relations. However,
in this case Hamiltonians are non-Hermitian and a specific automorphism, that defines pseudo-
adjoint operators, should be involved [13, 14]. In particular if A is a linear operator and η is
linear, Hermitian, invertible operator then

A� = η−1A+η, (3)

where ‘+’ sign denotes the usual (e.g. Laplace) adjoint operation, by definition is the pseudo-
adjoint of A with respect to η. The operation of formal (Laplace) conjugation obeys the
standard rules (AB)† = B†A†, (d/dt)† = −d/dt and corresponds to the transposition of a
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matrix accompanied by the complex conjugation of its elements. Operator B is said to be
pseudo-Hermitian with respect to η if B� = B, i.e.

B = η−1B+η. (4)

Basic properties of pseudo-Hermitian operators are discussed in detail in [14].
Recently [10] it was observed that a polynomial pseudo-supersymmetry may be associated

with a two-level system interacting with a classical (i.e. not quantized) electromagnetic field.
The method is based on the possibility to rewrite the Schrödinger equation (2) that governs
the evolution of the system in the form of a one-dimensional stationary Dirac equation

h0� = E�, (5)

where the time plays the role of a spatial variable and the Dirac Hamiltonian

h0 = iσx

d

dt
+ V0(t), V0(t) = iσyε0(t), E = � (6)

is non-Hermitian, with the subsequent application of the well-developed intertwining operators
technique [15]. Function ε(t) plays the role of a ‘potential’.

It is easy to see that h0 (6) is pseudo-Hermitian with respect to η = σx . The next ingredient
of the method is based on the existence for any real-valued function ε0(t) such real-valued
function ε1(t) and operator L (intertwiner) that

Lh0 = h1L, (7)

where h1 = iσxd/dt + V1(t) with V1 = iσyε1(t). The pseudo-Hermiticity of h0 results in the
following factorizations:

ηL+ηL = h2
0 − �2, LηL+η = h2

1 − �2. (8)

The constant matrix � = diag(λ,−λ) in (8) is called the (matrix) factorization constant
(λ is also called the factorization constant). Formulae (8) present a generalization of the
factorization properties of transformation operators that take place in the case of Hermitian
one-component Hamiltonians [16]. If now we introduce matrix operators (in block-matrix
forms)

H =
(

h0 0
0 h1

)
, Q1 =

(
0 0
L 0

)
, Q2 =

(
0 JL+J

0 0

)
(9)

then the intertwining (7) and factorization (8) relations may be rewritten as the following set
of commutation and anti-commutation relations between these operators:

Q2
1,2 = 0, HQ1,2 = Q1,2H, Q1Q2 + Q2Q1 = H 2 − diag(�,�) (10)

which indicate on the simplest quadratic pseudo-superlagebra. Note that the subsequent
application of this technique leads to a more general polynomial pseudo-supersymmetry [10].
On the other hand if we start from V0 with known solutions to the Dirac equation (5) then
solutions of the same equation with V1 can be obtained by applying L to the previous solutions.
In this way new exactly solvable two-level potentials are obtained [10] which we use in the
following section to demonstrate the possibility of the dynamical qubit controlling.

3. Dynamical qubit controlling

Consider first the case when the external control field ε = ε1(t) changes in the following way:

ε1 (t) = −ε0 +
4ε0

1 + 4ε2
0t

2
. (11)
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Figure 1. Evolution of P
↓
1 probability at δ = √

3/2 solid, dot-dashed and double-dot-dashed
(black, red and green) lines, at dephasing (�ϕ) and relaxation (�r ) rates: �r = �ϕ = 0.05 dot-
dashed (red) line and �r = �ϕ = 0.1 double-dot-dashed (green) line; δ = √

3/2 ± 0.25 dotted
and dashed (violet and blue) lines, respectively.

Parameter ε0 gives us the possibility to choose a suitable time scale since after re-scaling
τ = 2ε0t , and redefining parameter �,� = 2ε0δ, we obtain the Schrödinger equation with
the Hamiltonian

H = −δσx − ε(τ )σz, ε(τ ) = ε1(τ ) = −1

2
+

2

1 + τ 2
(12)

for which exact analytic solutions are known [10]. Therefore imposing the initial condition
P ↓ (0) = 0 we can write down an explicit expression for the probability P ↓ (τ )

P
↓
1 (τ ) = (θ2 − 1)(θ2 + 4)

2θ4

τ 2

1 + τ 2
+

(θ2 − 1)(θ2 − 4)

2θ6(1 + τ 2)

× [θ2 − 4 − (θ2 − 4 + θ2τ 2) cos θτ + 4θτ sin θτ ], (13)

where we have introduced θ =
√

1 + 4δ2. From here it is clearly seen that P
↓
1 (τ ) is an

oscillating function provided θ �= 2 (δ �= √
3/2). For θ = 2 (δ = √

3/2) equation (13) yields

P
↓
1 (τ ) = 3

4

τ 2

1 + τ 2
(14)

which is a function monotonously increasing from zero at τ = 0 till the value 3/4 for τ � 1
(solid (black) line in figure 1). Since δ differs from � only by the scaling factor 2ε0 we
will call δ tunnel frequency as well. We note a decrease of the oscillation amplitude when
δ approaches its critical value equal to

√
3/2. This is why for δ close enough to the value√

3/2 the minimal value of the probability P
↓
1 (τ ) for τ > 2 exceeds 1/2 (see dashed (blue)

and dotted (purple) lines in figure 1).
The time-averaged probability as shown in figure 3(a) by solid (black) line exhibits a

maximum. Its analytic expression

P
↓
1 = 2δ2 5 + 4δ2

(1 + 4δ2)2
(15)

allows us to get the exact position of the maximum which is 25/32 ≈ 0.78 at δ = √
5/12.

The result we have just obtained suggests us to consider a more general case [9, 10],
where function ε(τ ) being periodical depends on three parameters. One of them we fix by
re-scaling both time and another parameter (frequency ω appearing in equation (16)) in a way
as it has been done above, thus obtaining the field

ε2(τ ) = −1/2 − 2ω2

b cos(2ωτ + ϕ) − 1/2
, (16)
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(a)

(c)

(b)

Figure 2. Evolution of P
↓
2 probability at δ = √

3/2 + 0.1, at dephasing (�ϕ) and relaxation (�r )

rates: �ϕ = 0.1, �r = 0.05 dot-dashed (red) line and �r = 0.2 double-dot-dashed (green) line;
(a) ω = 0.105, (b) ω = 0.205 and (c) ω = 0.314.

(a) (b)

Figure 3. δ-dependence of time-averaged probabilities for the closed system solid (black) lines
and with dephasing (�ϕ) and relaxation (�r ) rates: �r = �ϕ = 0.01 dot-dashed (red) lines;
(a) �r = �ϕ = 0.1 and (b) �r = �ϕ = 0.05 double-dot-dashed (green) lines.

where b2 = 1/4 − ω2 > 0. The remaining parameter ϕ can also be eliminated by shifting
the time origin so that we put ϕ = 0 thus reducing external fields to a one parameter (ω)

family. It is important to note that the previous result (12) may be obtained from here at
ϕ = arctan ω − 1

2 arctan ω
b

in the limit ω → 0.

According to [10] the analytic expression for P
↓
2 (τ ) reads

P
↓
2 (τ ) = 4δ2

θ2
sin2

(
1
2θτ

) − 4δ2b[Q − ω(b + b2 − δ2)θ sin(2ωτ) sin(θτ )]

θ2(b2 + δ2)2(2b cos(2ωτ) − 1)
,

where

Q = b(1 + 2b)θ2 cos2
(

1
2θτ

)
sin2(ωτ) + 4ω2(b − 2δ2) cos2(ωτ) sin2

(
1
2θτ

)
.

To show the possibility to control the qubit state by external field (16) we plot function
P

↓
2 (τ ) for δ close to its critical value and for different values of ω. Since the above considered

case corresponds to ω = 0, we show in figure 2(a) (solid (black) line) its behavior for
ω = 0.105 which is rather close to zero. During a sufficiently long time interval the probability
oscillates between 0.6 and 0.8 after which it falls to zero. The closer ω gets to zero, the longer
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Figure 4. Time dependence of clockwise current direction probabilities at ω = 0.49 and δ = 0.1
solid (black line), at dephasing (�ϕ) and relaxation (�r ) rates: �r = �ϕ = 0.01 dot-dashed (red)
line and �r = �ϕ = 0.02 double-dot-dashed (green) line.

this period becomes and the closer to 1/2 frequency ω becomes, the more this interval is
reduced (see the solid (black) lines in figures 2(a), (b) and (c)). We have to note that in the
limit ω → 1/2 (b → 0 in equation (16)) function ε2(τ ) tends to a constant value equal to 1/2.
This signal reproduces the Rabi oscillations with the frequency 2

√
δ2 + 1/4. Thus, ω may

be considered as a continuously tunable parameter of the external field (16) with the help of
which, starting with the usual Rabi oscillations, one may fix the clockwise current direction
as long as desirable. We would like to stress that the range of δ, for which the probability
exceeds the value 1/2, is rather large, i.e. 0.6 < δ < 1.1. This may facilitate its experimental
detection.

Analytic expression for P
↓
2 (τ ) shows us that it represents a complicated superposition

of two oscillating functions with frequencies θ and 2ω. Therefore if these frequencies are
close enough to each other one may observe a beating phenomenon (figure 4). In this case
the oscillations with the small amplitude and the frequency close to the Rabi frequency take
place at the background of the oscillations with the amplitude close to 1 and the very small
frequency defined by the difference between 2ω and θ .

Another aspect we would like to emphasize is that this type of the external field is not
unique. As we show below, there exist other possibilities for the time dependence of the
external field exhibiting a similar feature.

Consider an exactly solvable model with a bit more complicated form of function
ε(τ ) = ε3(τ ) [10]

ε3 (τ ) = −1

2
+

6

Q0
(τ 4 + 6τ 2 − 3), (17)

where Q0 = τ 6 + 3τ 4 + 27τ 2 + 9. The clockwise current direction probability P ↓(τ ) = P
↓
3 (τ )

in this case reads

P
↓
3 (τ ) = 4(θ2 − 1)τ 2

θ8Q0
[144(1 + τ 2) + θ4(τ 2 + 9)2 − 24θ2(5τ 2 + 9)]

+
(θ2 − 1)Q1

θ10Q0

[
Q2 sin2 (

1
2τθ

)
+ Q3 sin(τθ)

]
, (18)

where
Q1 = [(θ + 1)2 − 5)][(θ − 1)2 − 5)]

Q2 = θ4Q0 + 144(1 + τ 2) − 12θ2(5τ 4 + 6τ 2 + 9)

Q3 = 6θτ [θ2(τ 4 + 2τ 2 + 9) − 12(1 + τ 2)].

6
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(a) (b)

Figure 5. Probabilities (a) P
↓
3 (τ ) at θ = √

5 − 1 solid (black) line, θ = √
5 − 1.1 dotted

(violet) line and θ = √
5 − 0.9 dashed (blue) line; (b) P

↑
3 (τ ) at θ = √

5 + 1 solid (black) line,

θ = √
5 + 1.5 dotted (violet) line and θ = √

5 + 0.5 dashed (blue) line.

We note that this is just the second term in the right-hand side of equation (18) which is
responsible for time oscillations. Therefore if Q1 = 0 the oscillations in the time dependence
of the probability disappear and once again it acquires a monotonous character. But this time
since Q1(θ) is a bi-quadratic function, in contrast to the previous case, the clockwise current
direction probability turns from an oscillating to monotonous character at two possible values
of parameter θ, θ = √

5 ± 1. In these cases the behavior of probabilities P
↓
3 (τ ) and P

↑
3 (τ ) is

illustrated in figures 5(a) and (b) (solid (black lines)), respectively. We thus observe for P
↓
3 (τ )

an effect similar to that described above for P
↓
1 (τ ) and, in a sense, the opposite behavior of

P
↑
3 (τ ). The existence of the critical value is reflected also by the averaged probability P

↓
3

which is plotted in figure 3(b) (solid (black) line). It also has a simple analytic expression

P
↓
3 = 2δ2 13 − 8δ2 + 16δ4

(1 + 4δ2)2
(19)

with a maximum P
↓
3 ≈ 0.91 at δ ≈ 0.34.

The next question we study is how the effect, observing for an idealized closed system, is
influenced by a dissipation featuring open quantum systems [17]. To make rough estimations
we use a phenomenological approach in the density matrix formalism (see e.g. [18]). In this
approach a weak coupling of a system to the environment is described by two parameters,
dephasing �ϕ and relaxation �r rates. Under the initial condition 2ρ(0) = I with I being the
identity matrix, the elements of the density matrix (cf [19])

ρ = 1

2

[
1 + Z X − iY

X + iY 1 − Z

]
satisfy the Bloch equations [18]

Ẋ = −2ε(t)Y − �ϕX

Ẏ = −2δZ + 2ε(t)X − �ϕY

Ż = 2δY − �r (Z − Z(0)) .

Probabilities P ↓,↑ are defined only by the diagonal entries of the density matrix, P ↓,↑ =
(1 ∓ Z(t))/2.

The relaxation and dephasing effects are shown in figures 1–4 by dot-dashed (red) and
double-dot-dashed (green) lines. As expected, they disturb the system. The influence of
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dephasing is more crucial and it should not exceed 5% of δ value for bias (16). We observe
an interesting phenomenon concerning the relaxation. When the probability falls to zero the
relaxation smoothes this behavior and can even revert it (see green line in figure 2(a)). Thus,
in the current case the relaxation may be considered as helping to keep the state of the qubit
unchanged.

4. Concluding remarks

One of the most popular way to control the qubit state is to drive a two-level system
with microwave pulses (see e.g. [20]) where, in general, the probability P ↓(τ ) displays
(possibly controllable) Rabi oscillations. On the other hand it is known that with a specific
monochromatic driving force one can ‘freeze’ the state of a two-level system (so called
‘coherent destruction of tunnelling’ [8]). In this paper we report on a similar phenomenon but
we would like to point out that in principle it can be realized under other physical conditions.
This possibility is based on the fact that a magnetic flux with time-dependence like in
equation (16) may be realized with the help of a superconducting current. Indeed, according
to resistively shunted junction model [21] the time dependence of the current going through
the junction, which may produce the desirable external flux, reads

Is(t) = I − I 2 − I 2
c

I + Ic cos ω̃t
, ω̃ = 2e

h̄
R

√
I 2 − I 2

c , (20)

where R is a resistor parallel to the junction, I is an externally applied constant circuit current
and Ic is a critical value of the persistent current. The time interval, during which the qubit
is in P

↓
2 state, depends on frequency ω from equation (16) which according to equation (20)

may be continuously tuned with an externally applied current I.
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